
Floating-Point Modules Targeted for Use with RC
Compilation Tools

Clay S. Gloster, Jr., Ph.D., P.E.
Department of Electrical Engineering

Howard University
Washington, DC 20059
Phone: (202) 806 6628

cgloster@ howard.edu

Ibrahim Sahin
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27695-7914
 Phone: (919) 513 2014

isahin@eos.ncsu.edu

ABSTRACT

Reconfigurable Computing (RC) has emerged as a viable
computing solution for computationally intensive applications.
Several applications have been mapped to RC systems and in
most cases, they provided the smallest published execution time.
Although RC systems offer significant performance advantages
over general-purpose processors, they require more application
development time than general-purpose processors. This increased
development time of RC systems provides the motivation to
develop an optimized module library with an assembly language
instruction format interface for use by future RC system
compilers. Hence, RC system compilation tools for C++/Java
language programs can utilize these modules providing the
required infrastructure for an automated RC development system
that will reduce development time significantly. In this paper, we
present area/performance metrics for 9 different types of floating
point (FP) modules that can be utilized to develop complex FP
applications. These modules are highly pipelined and optimized
for both speed and area. Using these modules, an example
application, FP matrix multiplication, is also presented. Our
results and experiences show that with these modules, 8-10X
speedup over general-purpose processors can be achieved.

Keywords: Adaptive Computing, Reconfigurable Computing,
Reconfigurable Systems.

1. INTRODUCTION
Adaptive computing, also known as reconfigurable computing
(RC), is a combination of hardware/software data processing
platforms that include a general-purpose processor and one or
more FPGA devices. These RC systems combine the flexibility of
general-purpose processors with the speed of application specific
processors [1], [2]. In a typical reconfigurable computer,
computationally intensive portions of algorithms are executed on
FPGA devices for enhanced performance. A well-designed and
utilized adaptive computer could yield 10X to 100X improvement
in execution time over conventional general-purpose processor
based "software only" computers.

Several applications have been mapped to reconfigurable
computers to demonstrate the viability of RC systems.
Applications mapped to these systems include image processing
algorithms [3], [4], genetic optimization algorithms [5], and

pattern recognition [6]. In most cases, the reconfigurable
computing system provided the smallest published execution time
for these applications.

Although RC systems offer significant performance advantages
over general-purpose processors, they have a few disadvantages.
RC systems require more application development time than
general purpose processors, but significantly less than developing
an application specific integrated circuit. Also, RC system
designers need to be knowledgeable in the areas of hardware and
software system design. Additionally, due to the limited resources
available in previous RC systems, applications that required
floating-point (FP) operations were either, not mapped to RC
systems, or converted to fixed point before developing the RC
implementation [7].

In a recent study, we implemented several FP modules in VHDL
to perform IEEE floating-point operations [8] including addition,
subtraction and multiplication, and mapped them to a XC4044XL
FPGA device [9] to create a FP module library. While
implementing the FP modules, our goal was to maximize the
speed, minimize the hardware resources required, and reduce both
the module and the application design and implementation time.

Each module is designed to execute a specific machine language
instruction to process a set of FP vectors. Using the modules, RC
compilation tools can be developed to automate the RC system
design process. These compilation tools can potentially compile
applications implemented in C++/Java and produce
assembly/machine language instructions that correspond to each
module.

In this paper, an example application, FP matrix multiplication, is
presented. This application utilizes several modules to
demonstrate that larger, more complex, applications can be
developed with these modules. Our results and experiences
demonstrated that with these modules, application development
time is reduced significantly and 8-10X speedup over general-
purpose processors can be achieved.

This paper presents implementation details and area/performance
metrics for 9 different types of FP modules that can be utilized to
develop complex FP applications. These modules are highly
pipelined and optimized for both speed and area. The following
section presents detailed information about the core units and the
modules. Experimental results and module statistics are presented
in Section III. Implementation of a matrix multiplier using our
modules is presented in Section IV. The paper concludes with
suggestions for future research.

This research is supported in part by NASA grant #NAG5-7942

2. FLOATING-POINT MODULES
In this study, we developed several standard components to create
different types of modules that are useful for various applications.
These component types are floating-point core units, module
controllers and module datapaths. These components are
standardized in terms of the number of inputs, the number of
outputs and module latency, in order to facilitate module
interconnection for complex operations. By combining unique
core units with a few controllers and datapaths, several different
types of modules have been created. Using this approach, the time
required to design a new module is reduced significantly. When a
new core unit is designed, one simply combines the new core with
an off-the-shelf controller and datapath.

Floating-point
Core

Standard
Datapath

Standard
Controller

Controller
commands

Feedback
signals

Data I/OAddr. Bus

Memory

Figure 1: Block diagram of the standard module structure.

Figure 1 shows the block diagram of the standard floating-point
module. Each module consists of a standard controller and a
standard datapath that interfaces with an external memory. New
cores are simply instantiated in a standard datapath resulting in
new modules.

This paper presents experimental results using three different core
units, four different controllers and three different datapaths to
produce a total of 9 floating-point modules. (IBRAHIM - LIST
THE CORES HERE) The multiply-accumulate module was used
to implement matrix multiplication on 4 FPGA devices.

2.1 Module Machine Language and Execution
All modules are designed to execute a specific machine language
instructions. Each module instruction corresponds to a single
floating-point vector operation. A standard instruction includes
three or four operands depending on the type of module used.
Figure 2 shows the instruction format for each module. For each 3
operand module instruction, the first operand is the starting
address of the input vector, the second is the starting address of
the output vector, and the third operand is the size of the input
vectors.

For each four operand module instruction, the first two operands
are the starting addresses of the two input vectors, the third
operand is the starting address of the output vector and the last
operand is the size of the vectors. The floating-point accumulator
and product modules use the instruction format of Figure 2a.
However, these modules produce an output vector with length 1.

All modules were designed for a commercial FPGA board [10]
that is readily available in our laboratory. This board includes

five FPGA devices or Processing Elements (PEs). Each PE has its
own dual ported local memory (1M Byte). The host computer and
the PE have read and write access to the local memory. The
memory space of each module is partitioned into two sections,
instruction and data. The instruction memory always starts at
memory address $00000 and ends with the HALT instruction
($FFFFFFFF). The remaining memory that is not used for
instructions is used for data.

FPVECADD 100 200 50
Size of the vectors
Start of the output vector
Start of the input vector

FPVECADD 100 200 50
Size of the vectors
Start of the output vector
Start of the input vector

(a)
FPVECADDS 100 150 200 50

Size of the vectors
Start of the result vector
Start of the 2nd vector
Start of the 1st vector

FPVECADDS 100 150 200 50
Size of the vectors
Start of the result vector
Start of the 2nd vector
Start of the 1st vector

(b)

Figure 2: Modules instruction formats. (a) Module instruction
for a single input vector module. (b) Module instruction
format for a two input vector module and the multiply-
accumulate module.

Once a module configuration has been loaded into a PE and the
local memory has been initialized by the host computer, the
module waits for the reset signal to be asserted. When this occurs,
the module reads the first instruction from the memory location
$00000. It then begins executing the instruction. When the current
instruction has completed, the module reads the next instruction
from the instruction memory. This process continues until the
module reads a HALT instruction ($FFFFFFFF) from the
instruction memory. When this value is read, the module stops
and sends an interrupt signal to the host computer.

The modules’ execution times can be evaluated given the number
of cycles required to process one set of vectors. The memory unit
we used has a two clock cycle latency for read operations and a
one clock cycles latency for write operations. The vector addition,
subtraction and multiplication modules write results back to the
memory between successive read operations. Hence, the optimal
memory access schedule for these modules is two read cycles
followed by one write cycle producing a result every 3 cycles. We
achieved near-optimal performance with our modules since we
inserted only one idle state. Using this approach, an output is
produced every 4 cycles.

We developed Equation (1) to approximate the total execution
time of the modules (TE). In this equation, NF is the number of
cycles required to fetch an instruction, NP is the number of cycles
required to process the given vectors, NE is the number of cycles
required to empty the pipelined core, FM is the module clock rate,
and CAPI is the Application Programming Interface (API)
overhead.

+=
NF + NP + NE

(1)CAPITE FM

=
4N (2)CAPITE
FM

+

For three and four operand modules developed for vector
addition, subtraction, and multiplication, the instruction fetch
takes 9 and 10 cycles respectively and pipeline emptying takes 8
cycles. Processing takes 4 cycles per pair of vector elements. The
constant API overhead depends on the host computer’s speed. For
large vectors, instruction fetch and pipeline emptying times for
addition subtraction, and multiplication are negligible and
equation (1) could be rewritten, as equation (2) where N is the
length of the vectors.

Since the accumulator and product modules do not write back to
the memory until the end of the module instruction, both are able
to read an element of the input vector from the memory every
clock cycle. As a result, cores in the accumulator and the product
modules are utilized 100% and run almost fours times as fast as
the other modules. Equation (1) also applies to these modules.
Equation (3) shows the execution time when instruction fetch and
emptying are negligible.

=
N (3)CAPITE
FM

+

=
2N (4)CAPITE
FM

+

The multpliy and accumulate module is able to read two FP vector
elements every two (IBRAHIM – IS THIS RIGHT?) cycles.
The core units are 50% utulized. Equation (4) could be used to
estimate execution time for this module.

2.2 Core Units
The most important component of a module is the floating-point
arithmetic core. For each floating-point operation, we developed a
standard core unit. Each core unit is highly pipelined, has the
same inputs and outputs, and has the same latency. By
instantiating each unique core unit into a standard module
structure, we created a new module for each operation.

Figure 3 shows the block diagram of the standardized core unit.
Each core has two 32-bit inputs and one, 32-bit output to
accommodate single precision FP numbers. For addition,
subtraction and multiplication, different floating-point core units
were developed. There is a standard interface definition for the
core units to reduce design time. Once a new core unit is
designed, it is easy to create a new module by just instantiating
the new core unit into the standard module structure.

To improve the maximum clock speed that can be applied to the
units, all core units are divided into a standard number of pipeline
stages (8). We used a standard number of pipeline stages to
alleviate the need to develop a unique controller within each core.
However, the main controller can handle cores with arbitrary
latencies. While, using pipeline units requires additional registers
resulting in an increase in FPGA CLB resources, it provides
significant benefit in terms of increased clock speed.

Floating Point Core

3232

32

Left
Data In

Right
Data In

Left
Ready

Right
Ready

Result
Ready

Data
Output

Figure 3 Block diagram of the standard core units.

To reduce the hardware requirements and to make the module
controller simpler, core units are designed as self-controlled units.
Once data is available at both inputs, the core unit starts
processing. Results are available at the output of the unit 8 clock
cycles later.

This is accomplished with a standard floating–point core I/O
interface. Each core has two input signals and one output signal
for control and core interconnection. Each time that the module
controller reads a floating-point number from the memory, it
asserts either the LEFT_READY or RIGHT_READY signal
corresponding to the core input that has valid data. When both
inputs to the core have valid data and both ready signals are
asserted, the core begins the floating-point operation. When the
core finishes processing the data, it asserts the RESULT_READY
signal. The main controller then stores the result in memory.

Use of the standard interface control signals serves two purposes.
The main purpose is to reduce controller complexity and to
increase controller flexibility. Hence, a single controller can
handle future cores with arbitrary latencies. The controller does
not send command signals to each stage of the core. Instead, it
uses the interface signals to signal the core that the input data is
ready. It also uses the RESULT_READY signal produced by the
core to determine when the result is ready. This simplification in
the controller saves control states, logic gates, and future
application development time. The other purpose is to facilitate
the addition of complex cores into the library. The use of the
standard interface control signals makes it is easy to form larger
cores by simply linking existing cores together.

2.3 Module Datapath
Three unique datapaths have been developed for this paper.
Figure 4 shows the block diagram of the datapath for two input
vector addition, subtraction, and multiplication. Although the core
unit is self-controlled, there are still many parts to control in the
datapath. For that reason, as shown in Figure 6, the datapath was
partitioned into two sections: the data processor and the
fetch/decode unit. The controller generates different micro
instructions for each section.

CR0 CR1 CW PC

M2

Comp. ECnt

Fetch/Decode
Unit

Floating-Point Core

R0 R1

Data
Processor

Data In
32

41832

Data Out Address OutDone Final To Controller

Datapath

n

Addr. Mng.
Micro Inst.

Input

m

Data Processor
Micro Inst.

Input

RF

Figure 4: Block diagram of the standard datapath for two

input vector modules.

The data processor section of the accumulator datapath consists of
the core unit, two 32-bit data registers, and two multiplexors. The
registers are used for two purposes. First, they are used for
temporary storage. Since we are only able to read one 32-bit value
at a time from the memory, the data read from memory is stored in
one of these registers. Secondly, since the floating-point core
inputs are not registered, we must include registers in the
datapath. For the accumulator and the product modules, it is
necessary to connect the output of the core back to the input of the
core. This connection is accomplished with M0 and M1
multiplexors as shown in Figure 5.

CR RF CW PC

M2

Comp. ECnt

Fetch/Decode
Unit

Floating-Point Core

R0 R1

M0 M1
Data

Processor

Data In
32

41832

Data Out Address OutDone Final To Controller

Datapath

n

Addr. Mng.
Micro Inst.

Input

m

Data Processor
Micro Inst.

Input
Figure 5: Block diagram of the standard datapath for the

accumulator and the product modules.

The fetch and decode unit includes: four counters, one register,
one specialized comparator, and a multiplexor. The CR and CW
counters are loadable counters and are used for addressing input
and output vectors.

PC is used as a program counter to keep track of the module
instructions. The E Counter is used for emptying the pipelined
core units. After the last set of input data is loaded from the
memory, the controller sets this counter equal to the number of
cycles required to empty the pipeline. The controller waits until
all the remaining data in the core is processed and the results are
written back to the memory. The E counter is especially useful
while emptying the accumulator core. The RF register is used to
store the size of the input vectors.

The specialized comparator produces two signals. The DONE
signal is asserted when the module reaches the end of a given set
of vectors. The FINAL signal is asserted when all instructions
have been processed.

2.4 The Module Controller
In this paper, four unique module controllers are presented. The
first controller assumes that elements of the input vector pair are
interleaved or stored in consecutive memory locations as follows;
A0, B0, A1, B1, A2, B2, ... AN, BN. It is used for one input
vector modules. The second controller assumes that the input
vectors are separate. The first and the second type of controllers
were used to construct vector addition, subtraction, and
multiplication modules. The third type of controller has been
developed for the accumulator and the product modules and
fourth type has been developed for multiply and accumulate
module. The controllers for the accumulation, the product and the
multiply and accumulate modules are much more complicated
than the previous two due the pipeline emptying process of these
modules.

When a pipelined adder is used for vector accumulation the
process can be performed in three steps. Step 1: Forward the
numbers through the pipeline until the first number appears at the
output of the pipeline. Step 2: Accumulate the numbers until the
last number is read from the memory. Step 3: Empty the pipeline.
The first and the second steps are similar to the addition and
multiplication process. The last step requires special handling;
therefore, a special module controller has been developed for the
accumulator module.

3. EXPERIMENTAL RESULTS
3.1 Module Statistics
Table 1 shows the resulting device utilization and maximum clock
speed for each module. These values were collected after module
placement and routing was completed for a XC4044XL FPGA
device.

The adder and the subtractor modules use only 28% and 29% of
an FPGA device, respectively. This means that three adder or
subtractor modules can fit into one FPGA device. On the other
hand, since the adder and subtractor cores require only 20% of the
device, five cores can fit into one FPGA device. Since the board
that we are using has 5 FPGA devices on it, a total of 25 adder or
subtractor cores can be utilized on the board. The complete
multiplier module requires around 60% of an FPGA device, and
the multiply and accumulate module requires 79% of and FPGA
device. Only one multiplier module or multiply and accumulate
module can fit into one FPGA. Therefore, a total of five
multipliers or multiply and accumulate modules can be utilized on
the board simultaneously.

Table 1: Device utilization and maximum clock speeds.

Module Name CLB
Util.

%
Util.

Clk. Speed
(MHz)

Adder (One Input Vector) 463 28 29.53
Adder (Two Input Vectors) 473 29 30.44
Subtractor (One Input Vector) 464 29 30.08
Subtractor (Two Input Vectors) 476 29 30.64
Multiplier (One Input Vector) 953 59 28.47
Multiplier (Two Input Vectors) 984 61 27.23
Accumulator 432 27 31.43
Product Module 944 59 26.44
Multiply and Accumulate Module 1265 79 25.35

Table 2: Comparison of module execution time with software implementations.

Implementation Type

Operation Type Software
C++

Software
Optimized

C++

Hardware
(1 Module)

Hardware
(2 Modules)

Hardware
(5 Modules)

Speed-up
(5 modules vs

optimized
software)

One Input Vector Addition 14.48 8.54 10.80 5.40 2.16 3.95
One Input Vector Subtraction 14.29 7.95 10.80 5.40 2.16 3.68
One Input Vector Multiplication 14.28 7.97 10.80 5.40 2.16 3.69
Two Input Vector Addition 12.67 9.79 10.80 5.40 2.16 4.53
Two Input Vector Subtraction 12.24 9.64 10.80 5.40 2.16 4.46
Two Input Vector Multiplication 12.33 9.52 10.80 5.40 2.16 4.41
Accumulation 7.54 4.89 2.704 1.36 0.54 9.05
Product 7.71 6.21 2.704 1.36 0.54 11.05
Multiply and Accumulate 11.24 8.20 5.432 2.71 1.08 7.59

3.2 GPP Versus RC Modules
The clock frequencies shown in Table 1 are the values indicated
by the design tools. Modules were tested at these speeds and they
behaved as expected. However, we over-clocked the modules to
50 MHz, the maximum clock speed supported by the FPGA
board. Surprisingly, all the modules worked properly at 50 MHz.

Table 2 shows the execution times of the modules, along with the
regular C++ implementations running on a Pentium II 300 MHz
processor based PC. In these experiments, the modules were
clocked at 50 MHz. The length of each input vector was 131,000
requiring 232,000 words of memory for storage. Hence, a total of
261,999 floating-point operations were performed by the multiply
and accumulate module and 131,000 floating point operations
were performed by the other modules. Since all the modules have
exactly the same latency, the execution time is identical for similar
types of modules. When only one addition, subtraction or
multiplication module utilized, the module runs faster than the
regular software implementation but slower than the optimized
software implementation. As the number of modules used
increases, the execution time of the modules decreases. When five
modules are utilized, the modules perform the same number of
floating-point operations around four times faster than a Pentium
II 300 MHz processor. When five accumulator or product
modules are utilized, they run 9 and 11 times faster than the
optimized software implementations. The accumulator module
gains more speedup than the other modules because of 100 %
core utilization.

4. EXAMPLE APPLICATION: MATRIX
MULTIPLICATION USING MODULES
In this study, we also wanted to implement an example
application, matrix multiplication, to demonstrate how to use
modules to solve larger problems. Matrix multiplication was
selected because of its scalability and highly parallel nature [11].
For simplicity we used square matrices. Two input matrices were
divided into two equal parts. The first matrix was divided
horizontally and the other was divided vertically. Combinations of
the halves were assigned to four PEs as shown in figure 6. Each
PE was responsible for calculating one quarter of the resulting
matrix. The PEs’ memory was divided into three sections,
instruction, input data and the result data memories. Since each

PE has 1 MB of memory the largest square matrices that we can
multiply is 340 x 340.

PE3
Memory

PE4
Memory

PE2
Memory

PE1
Memory

PE3

PE1 PE2

PE4

A BC

= *

Figure 6: Matrix multiplication using modules.

The matrix multiplication process was implemented in one
session. During the session, the input matrix data and the module
instructions were stored in the memory units. After that, the PEs
were configured with multiplication modules and were started by
releasing the reset signal. The host computer waited for the
interrupt signals from PEs. When the host computer received
interrupt signals from all four PEs, the session was completed and
all elements of the resulting matrix were calculated and stored in
each PEs’ memory. After the session was completed, the host
computer read the results from the PEs’ memories and printed it.
Since many addresses involved in this matrix multiplication, it is
almost impossible to manually generate all module instructions
correctly. For that reason, we developed a small tool to generate
instructions for the modules. We also implemented a host
program to manage all data and instruction transfers between the
host computer and the PEs and to manipulate the modules.

4.1 Results of Matrix Multiplication.
Due to the memory limitations of the RC system we use, the
maximum matrix size that we can multiply using the modules is
340 x 340. To test the matrix multiplication, using the tool, we
generated module instructions for 200 x 200 and 340 x 340
matrices. With the help of the host program, matrix
multiplications were performed on a RC system available in our
laboratory [10]. Table 3 shows the software and module execution
times in millisecond.

Table 3: Comparison of software and module matrix multiplier execution times.

Implementation Type

Matrix Size Regular
Software

(C++)

Optimized
Software1

(C++)

Optimized
Software2

(C++)

Hardware
(Modules)

Speed-up
comparing
to Regular
Software

Speed-up
comparing

to Optimized
Software2

200 x 200 1046.58 814.27 590.32 71.44 14.65 8.26
340 x 340 9076.06 6585.69 4188.10 411.04 22.08 10.19

In these experiments, the software version was running on a 300
MHz Pentium II based PC and the modules were clocked at 50
MHz. The results showed that, excluding the configuration time,
modules performed the matrix multiplication 2 to 3 times faster
than the regular software implementation and 0.64 to 1.98 times
faster than the optimized software version. The optimized
software version runs extremely fast when the matrix size is small
because the host computer takes advantage of its cache memory.
For small matrices, it is able to hold the entire input and output
matrices in the cache memory. From the table one can conclude
that as the size of the matrices increase, it is possible to obtain
significant speedup using the modules. This result implies that the
larger the matrix sizes, the better the modules will run. One
disadvantage of this modular matrix multiplier is that the
configuration time, which is approximately 130 milliseconds,
should be alleviated. To remove the configuration time overhead,
a future version of matrix multiplication can be completed in a
single session using a multiply-accumulate module (MAM).

5. CONCLUSIONS
In this study, we implemented several FP modules in VHDL to
perform IEEE floating-point operations, and mapped them to a
XC4044XL FPGA device to create a FP module library. The
modules are designed to be utilized by RC compilation tools to
automate the design process of RC applications and to reduce the
design and implementation time, while maintaining enhanced
performance. The results indicate that floating-point modules can
achieve speedups of a factor of 5 to 14 over a typical desktop
computer when the modules are utilized in parallel. Using these
modules, an example application, FP matrix multiplication, is also
presented. Our results and experiences demonstrated that with
these modules, application development time is reduced
significantly and 8-10X speedup over general-purpose processors
can be achieved. Results of this study will be used in the
development of future design automation tools with the goal of
facilitating RC system development while maintaining enhanced
performance.

6. ACKNOWLEDGMENTS
I would like to thank Dr. Alexander Winser of NCSU, Department
of Electrical and Computer Engineering for providing the
Annapolis Micro Systems Wildforce RC Board for this study.

7. REFERENCES
[1] D. Bhatia, “Reconfigurable computing,” Tenth International

Conference on VLSI Design, pp. 356-359, Jan. 1997.

[2] F. Rincon and L. Teres, “Reconfigurable hardware systems,”
1998 International Semiconductor Conference, Vol.1, pp.
45-54, Oct. 1998.

[3] E. Cerro-Prada, S.M. Charlwood, P.B. and James-Roxby,
“Image processing and its applications,” Seventh
international conference on image processing and its
applications, Vol.1, pp. 450-454, Jul. 1999.

[4] R.C.D.M. Tavares, C.J.N. Jr. Coelho, A.D.A. Araujo and
A.O. Fernandes, “Implementation of an edge detection
algorithm in a reconfigurable computing system,”
Proceedings of the Eleventh XI Brazilian Symposium on
Integrated Circuit Design, pp. 38-41, Sep. 1998.

[5] P. Graham and B. Nelson, “Genetic Algorithms in Software
and in Hardware,” Fourth IEEE Workshop on FPGAs for
Custom Computing Machines, Apr. 1996.

[6] H. Hogl, A. Kugel, J. Ludvig, R. Manner, K.H. Noffz, and R.
Zoz, “Enable++: A Second Generation FPGA Processor,”
Third IEEE Workshop on FPGAs for Custom Computing
Machines, 1995.

[7] W.B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F.
Stivers, K.D. Underwood, “A re-evaluation of the
practicality of floating-point operations on FPGAs,”
Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines. Apr. 1998.

[8] IEEE Standard Board, “IEEE Standard for Binary Floating-
Point Arithmetic”, ANSI/IEEE Std 754-1985, Aug. 1985.

[9] Xilinx Data Book 2000, V. 1.7, pp. 6-73, Oct. 1999.

[10] Annapolis Micro Systems Inc., “Wildforce Reference
Manual,” Revision 3.4, 1997.

[11] K. Li, Y. Pan, and S.Q. Zheng, “Fast and processor efficient
parallel matrix multiplication algorithms on a linear array
with a reconfigurable pipelined bus system,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 9,
No. 8, pp. 705 – 720, Aug. 1998.

